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This paper presents a model with ellipsoidal scatterers for applications to polafimetfic remote 
sensing of anisotropic layered media at microwave frequencies. The physical configuration includes 
an isotropic layer covering an anisotropic layer above a homogeneous half space. The isotropic layer 
consists of randomly oriented spheroids. The anisotropic layer contains ellipsoidal scatterers with a 
preferential vertical alignment and random azimuthal orientations. Effective permittivities of the 
scattering media are calculated with the strong flucutation theory extended to account for the 
nonspherical shapes and the scatterer orientation distributions. On the basis of the analytic wave 
theory, dyadic Green's functions for layered media are used to derive polafimetfic backscattering 
coefficients under the distorted Born approximation. The ellipsoidal shape of the scatterers gives rise 
to nonzero cross-polafized returns from the untilted anisotropic medium in the first-order approxi- 
mation. Effects of rough interfaces are estimated by an incoherent addition method. Theoretical 
results and experimental data are matched at 9 GHz for thick first-year sea ice with a bare surface 
and with a snow cover at Point Barrow, Alaska. The model is then used to study the sensitivity of 
polafimetfic backscattering coefficients with respect to correlation lengths representing the geometry 
of brine inclusions. Polafimetfic signatures of bare and snow-covered sea ice are also simulated 
based on the model to investigate effects of different scattering mechanisms. 

1. INTRODUCTION 

Technology in remote sensing has been advanced 
considerably, especially for airborne and space- 
borne radars with multifrequency and multipolar- 
ization capabilities. Theoretical models have been 
developed to interpret multifrequency data for re- 
mote sensing of geophysical media. Several ap- 
proaches including radiative transfer, modified ra- 
diative transfer, and analytic wave theories have 
been considered in model developments [Tsang et 
al., 1985]. The analytic wave theory, which remains 
mathematically tractable for some complexity of 
the media, preserves phase information which is 
appropriate for the calculation of polarimetric scat- 
tering coefficients [Nghiem et al., 1990]. Under the 
Born approximation for sparse and tenuous media, 
conventional scattering coefficients have been de- 

Copyfight 1993 by the American Geophysical Union. 

Paper number 93RS01605. 
0048-6604/93/93RS-01605508.00 

rived for isotropic multilayered [Zuniga et al., 
1979], anisotropic layered [Lee and Kong, 1985], 
and isotropic-anisotropic layered [Borgeaud et al., 
1986] configurations. Fully polarimetric scattering 
coefficients have also been calculated for isotropic 
[Borgeaud et al., 1987] and anisotropic [Borgeaud 
et al., 1989] layered configurations. In these mod- 
els, scatterers are spherical or spheroidal and cross- 
polarized returns come from second- (or higher-) 
order [Zuniga et al., 1980] or tilted anisotropy [Lee 
and Kong, 1985]. For denser or less tenuous media 
the Born approximation needs to be improved. The 
distorted Born approximation has been applied to 
random medium modeling [de Wolf, 1971; Rosen- 
baum and Bowles, 1974; Lang, 1981]. This approx- 
imation considers dissipation loss, scattering loss, 
and the modification of wave speed due to scatter- 
ers; thus multiple scattering has been included to 
some extent. For media with strong permittivity 
fluctuations, the strong fluctuation theory is used to 
derive anisotropic effective permittivities [Tsang 
and Kong, 1981a; Stogryn, 1987]. Tsang and Kong 
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Fig. 1. Physical configuration of layered media. 

Fig. 2. Illustration of a sea ice horizontal thin section; the 
arrows represent random horizontal orientations of crystallo- 
graphic c axes and ellipsoidal brine inclusions. 

[1981a] further use the derived effective permittiv- 
ities to calculate copolarized backscattering coeffi- 
cients under the distorted Born approximation. 
With this method, conventional backscattering co- 
efficients have been computed for an isotropic half- 
space [Tsang et al., 1982], an anisotropic half-space 
[Tsang and Kong, 1981b], and a configuration for an 
isotropic layer of spherical scatterers above an 
anisotropic layer of aligned spheroids [Lin et al., 
1987]. 

Ellipsoidal scatterers have been observed in sea 
ice in the form of brine inclusions which are ori- 

ented preferentially in the vertical direction and 
randomly in azimuth [Weeks and Ackley, 1982; Gow 
et al., 1987]. This orientation distribution effec- 
tively renders the medium anisotropic. The model 
in this paper accounts for the ellipsoidal shape, the 
medium anisotropy in a layered configuration, 
strong permittivity fluctuations, and fully polarimet- 
ric scattering of layered media. The physical con- 
figuration is illustrated in Figure 1 where Ooi is the 
incident angle. The covering isotropic layer is com- 
posed of randomly oriented spheroids, which have 
been used to describe scatterers in an inhomoge- 
neous layer [Nghiem et al., 1993]. In the anisotropic 
layer, scatterers are modeled with an ellipsoidal 
correlation function with orientations characterized 

by a probability density function of the Eulerian 
rotation angles. The strong permittivity fluctuation 
theory is extended to calculate effective permittiv- 
ities, and the distorted Born approximation is ap- 
plied to derive polarimetric scattering coefficients. 

Theoretical results are compared with measured 
data at 9 GHz for bare and snow-covered sea ice. 

Effects of rough interfaces are also estimated by the 
incoherent addition approach [Lee and Kong, 
1985]. Variations of polarimetric backscattering co- 
egicients are studied for various correlation lengths 
and polarization signatures of sea ice are simulated 
and discussed for different scattering mechanisms. 

2. EFFECTIVE PERMITTIVITY 

In the isotropic scattering medium of region 1 in 
Figure 1, embedded scatterers are modeled as sphe- 
roids, and the effective permittivity has been de- 
rived under the strong fluctuation theory [Nghiem 
et al., 1993; Yueh et al., 1990]. In the anisotropic 
medium (region 2), ellipsoidal scatterers have a 
preferential alignment resulting in the effective an- 
isotropy. The effective permittivity tensor of the 
scattering anisotropic medium will be calculated in 
this section for the ellipsoids with vertical alignment 
and random azimuthal orientations. 

In an inhomogeneous medium such as sea ice, sea 
water is trapped in an ice medium in the form of 
brine inclusions which are ellipsoidal as observed in 
horizontal thin sections and vertical micrographs of 
sea ice [Weeks and Ackley, 1982; Gow et al., 1987]. 
The ice tends to grow vertically downward render- 
ing the ellipsoidal inclusions aligned preferentially 
in the vertical direction. In the absence of sea 

currents, crystallographic c axes are randomly ori- 
ented in azimuth as seen in Figure 2, which depicts 
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Fig. 3. Geometry of an ellipsoidal scatterer. 

a horizontal thin section of sea ice. Consequently, 
the minor axes of the ellipsoids have random orien- 
tations parallel to the horizontal plan. In this model 
a correlation function corresponding locally to a 
scatterer is used in the derivation of the effective 

permittivity tensor with the strong permittivity fluc- 
tuation theory, extended to account for the orien- 
tations of the ellipsoidal scatterers. When the aver- 
aging process is performed over orientation angle 4y 
shown in Figure 3, the effective permittivity is an 
untilted uniaxial tensor with a vertical optic axis, 
which effectively manifests the azimuthal symmetry 
of the inhomogeneous medium. 

Let e0 be the permittivity of the host medium and 
es be the permittivity of the embedded ellipsoidal 
scatterers occupying a total fractional volume offs. 
The subscript for the anisotropic medium (region 2) 
is omitted in this section for convenience since the 

following derivation is for region 2 only. Auxiliary 
permittivity • = diag [e•p, e•p, e•z] is introduced 
into the wave equation [Tsang and Kong, 1981a] for 
later consideration of the singularity in the aniso- 
tropic dyadic Green's function G•(?, r-). The singu- 
larity is accounted for by decomposing •(?, r-) - 
•(?- r-) into a principal value pa• and a Dirac 
delta part with dyadic coefficient S which is a 
diagonal tensor with three distinctive diagonal ele- 
ments Sx,, Sy,, and S z, in the local coordinates (x', 
y', z'). Three coordinates are related to the global 
coordinates (x, y, z) by the Eulerian rotation tensor 

cos 4•f sin 4•f 0•] • = - sin 4•f cos 4•f (1) 
0 0 

Effective permittivity tensor •eff of the inhomo- 
geneous medium is composed of a quasi-static part 
and a scattering effect part which accounts for the 
attenuation in wave amplitude and the modification 
in wave speed due to the inhomogeneities: 

• = • + •00- •' (•]-•' • (2) 

where • is the unit dyad the angular brackets denote 
ensemble averaging. In (2), auxiliary permittivity •a 
and dyadic coefficient (•) are determined by the 
condition of secular-term elimination [T__sang and 
Kong, 1981a]. Effective dyadic scatterer see•, under 
the low-frequency approximation, is given by 

•• •r x ,y ,z [•eff]jm = dc•f p(c•f) Z p(o) S- •klm 
k,l 

(3) 

in which p(ckf) is the probability density function of 
orientation angle ckf, F g9•lm is the variance [Nghiem 
et al., 1990], k0 is the free-space wave number, and 
ß f is the Fourier transform of the normalized local 
correlation function. The anisotropic Green's func- 
tion •a [Tsang and Kong, 1981a], which is invariant 
under the azimuthal Eulerian rotation (1), is ex- 
pressed in the wave-vector k' domain as 

•5•(œ) = 

•2 

+ o o 

(k'x 2 q- k'y2)Oe(•) 

k•2•De(V) 
(4a) 

where the quantities Do(kW), De(kW), k•2•,, and k 2 gz are 
given by the following equations for angular fre- 
quency to and permeability t• 0' 

-- ,2 k, 2 2 Oo( = + + _ (4b) 
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Oe(k'3) = k, 2 q_ kg5 (k,x 2 q_ ,2 2 z •- • y - k•O (4c) 

ka2p = to 2/xoeat,, ka2z = to 2/xOeaz (4d) 

As in (2), the effective permittivity tensor has been 
approximated by truncating the series in the renor- 
malization method [Tsang et al., 1985]. The validity 
condition for the approximatioh is I[}e•(œ)]ljm << 1, 
where index j or m can be x, y, or z. 

The ellipsoidal scatterer is described with a nor- 
malized local correlation function of the form 

( Ix,2 y,2 Z,21 Re(F) = exp -•-•-•2, + •- + ly, '•-z2,/ 
(5a) 

with correlation length Ix,, ly,, and I z, in the local 
coordinates corresponding to the minor, the merid- 
ian, and the major axes of the scatterer, respec- 
tively. In this model, the correlation lengths are 
related to the effective size and shape of the scat- 
terers. This local correlation function can be re- 

duced to a spheroidal shape for two equal correla- 
tion lengthsand to a spherical shape for three 
identical correlation lengths. Applying the Fourier 
transform in (5a) yields 

•(•") = k, 212 k, 212 k, 2 2 2 (5b) •r2(1 + + + zlz ,) ß ' x'x' "y-y' 

For random horizontal orientations with no prefer- 
ence in azimuthal direction, the probability density 
function of orientation is simply 

p(rbf) = 1/(2st) (6) 

To calculate the effective permittivity tensor ac- 
cording to (2), •a and (•) need to be determined. 
Because of the global azimuthal symmetry, auxil- 
iary permittivity •a in coordinates (x, y, z) is 
uniaxial, as indicated previously, and the elements 
in •a are subject to the condition (•) = 0 such that 

{•:) __ ••sr dc•f p(c•f) •-1o •y, o 0]) 
= 0 •x' + •y' 0 = 

0 0 
(7) 

Local quantities •x', •y', and •z' in (7) are related to 
the elements of dyadic coefficient S = diag [Sx,, Sy,, 
Sz,] by 

E -- Egp 
•x,(e) = (8a) 

so + Sx,(e - e•,) 

E -- Egp 
•y,(e) = (8b) 

SO + Sy,(e -- egp) 

E -- Eg z 
•, (e) = (8c) 

so + Sz,(e - e•z) 

where e can take on the value of es in a scatterer or 
eb in the background medium. From (7) and (8), eap 
and e•z can be rewritten as 

Egp -- E b q- fs 
es - ea• 2e0 + (Sx, + Sy,)(es - eg o) 

1-f• 2e0 + (Sx, + Sy,)(eb - eg o) 

SO + Sx'(eb - sat:,) SO + Sy'(eb -- sat:,) 

SO + Sx'(es - sat:,) So + Sy'(es - sat:,) 
(9a) 

es - %z so + Sz,(e•, - e•z) 
e •z = e l, + f s (9b) 

1-fs eo + Sz,(es - e•z) 

respectively. The average dyadic coefficient (•) in 
the global coordinates is obtained by the averaging 
integration over the probability density function of 
orientation: 

[S•, 0 0] (•) _. ••sr dc•f p(c•f) •-1. Sy, 0 ß • 0 Sz' 

=- 0 Sx' + Sy, 0 = S•, 
2 0 0 2Sz, 0 Sz 

(10) 

Coefficients Sx,, Sy,, and S z, are derived from the 
secular elimination condition [Tsang and Kong, 
1981a] which gives 

2 2 

fff• e0 7x cos •b Sx, = d<b 2sre•,a• [(1 + a)tan-' 
(11a) 

Sy, -- drb 

2 2 
eO'Yy sin <b 

2sre•pa• [(1 + a)tan -1 •- 
(lib) 
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Sz' = dc• 
eo(1 + a) 

2,reaza• [5- tan-1 5] (11c) •y, = 

In (11) the integrations over •b can be carried out 
numerically, and quantities a, Yx, and yy are defined 
as 

E gz 
a = o•'y 2- 1, a - (12a) 

Egp 

1 (COS 2 • sin 2 ½b) '/:l-•',[ l• 2, + 2 ly, 

-1/2 

(12b) 

1 (COS 2 •b sin 2 ½b) TX:l"•', • lx 2, + ly2, 
- 1/2 

(12c) 

1 [cos2 • sin2 •) - 'YY :17 [ i•2, + 2 ly, 

1/2 

(12d) 

Also, because of the azimuthal symmetry of the 
scattering medium, the effective scatterer tensor •eff 
has the uniaxial form 

•ff=[ 0 0 •ffo 0 0 
(13) 

which is obtained by substituting the Green's func- 
tion, the correlation function, and the probability 
density function of orientation into (3). The integra- 
tions are carried out with a procedure involving 
branch cuts of complex variable functions [Nghiem 
et al., 1990]. The following equations determine the 
diagonal elements of •eff: 

1 

•eff t, : • [tS•x,(Ix, + Sx') +/5•y,(/y, + Sy,)] (14a) 

•effz = •iez'(Iz' + Sz') (14b) 

where Ix,, Iy,, and I z, are obtained by comparing 
(14) to (3). In (14), variance 15•x,, 15•y,, and 15•z, are 
given by 

[ 2 E b -- Egp 
•i•: x, = (1 -fs) 

so + S.,,,(s•, - 

[ ]2 E s -- Egp 
+ ' fs (15a) 

so + S.,v(Ss - so o) 

2 e 0 .4- Sy,(e b - egp) 

[ ,]2 E s -- Egp 
+ fs 

so + Sy,(es - coo 
(15b) 

[ ]2 E b -- Eg z 
8•:z' - (1 -fs) 

SO q- Sz'(Sb -- Sgz) 

[ 12 Es -- Eg z 
-t- , 

EO q_ SZ,(Es __ Egz) fs (15c) 

respectively. As observed from (14), expressions 
for Ix,, Iy,, and I z, are necessary to complete the 
derivation of the anisotropic effective permittivity. 
The result for I z, is 

,- - e o Ig) (16a) •z,: d• q• + 
7T E g z' 

I,• = 2a2 L '0e q- • OeOe 

(16b) 

2 
2 

1 + aVg z, Oo(a + 2) - (b -t- aVg2z,) 
0 o 0 o 0•oo 

2 2 2 2 21• , l•g z, kgol z, kg O o• O•go • _ Ot y2 2 -- • -- 1/ g z, 

(16c) 

(16d) 

b=•, Oo = b - 1, 0 e =b+ •' (16e) 

For Ix, the result is expressed as follows: 

f0 z• k0 • I•, d& 24 o 24 = -- (ly, yy sin 2 cb I• + l•,y x COS 2 • I;) (17a) 

e [ I• = a (/f - I•'- I•) 
1 

(17b) 

(17c) 
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= -• + -- - tan -1 (17d) 
2ce 2Oe b • 2 

1[ - 1 - , tan- 1 I• - 2aOo (17e) 

I• - 2a20 ø -• + tan -1 (17f) 2 

The result for Iy, can also be written in terms of I• 
and I• as 

f•" kø2 4 2 o 2 4 2 Iy, = drk -- (1•2,%, cos rk 14, + ly,3,y sin 4• I•) (18) 

where the relation Iy,(lx,, ly,, lz,) = Ix,(ly,, Ix,, lz,) 
has been used. Values of square-root and inverse- 
tangent functions in the above equations have been 
chosen in the respective principal Riemann sheets 
[Nghiem et al., 1990] with branch cuts on the 

negative real axis of the comp?x plane. 
Substituting •o, (•), and •e• in (2) yields the 

uniaxial effective permittivity tensor •½• = diag 
[eeeo, eeeo, eeez] whose elements are 

e½ffp = cap + e0•½ffo/(1- So•½eo) (19a) 

medium of permittivity eb2. Fractional volume of 
scatterers is fsn for n - 1, 2 in region 1 and 2, 
respectively. Region 3 is the underlying homoge- 
neous half-space of permittivity e 3 . In this section 
the distorted Born approximation with permittivi- 
ties obtained in the last section is applied to derive 
the complete set of polarimetric backscattering co- 
efficients constituting the covariance matrix or the 
Mueller matrix, which characterizes polarimetric 
scattering properties of the layered media. 

Polarimetric backscattering coefficients have 
been defined with ensemble averages of scattered 
fields [Nghiem et al., 1990]. The averages are 

calculated with spa__tial integrations over products of 
elements of DGF Gon, field vector f n, and fourth- 
rank correlation tensor •fn (for n - 1, 2) as follows: 

(g'-os(•-')•Os(•-')) = • k• d•f d•f Pl(•f, 
id,k,l,m 

' f v d?l f v d•ll C•:ljklm(?l ' •ll ; •tf ' c•f) 1 1 

ß [(G0•/•(r, r•))(F•(r•))]. [{Golil(?, •11)}{Flm(•11)}]* 

x,y,z 

+ fv id,k,l,m 2 

eeez = eaz + eo•eez/(1- Sz•eez) (19/9) 

As seen from the above expressions, effective 
permittivity tensor •eff is anisotropic with the optic 
axis in the vertical direction. In the next sectibn the 

anisotropic effective permittivity is used in tile 
derivation of polarimetric backscattering coeffi- 
cients with dyadic Green's functions (DGF) for the 
layered configuration. 

3. SCATTERING COEFFICIENTS 

Consider the configuration in Figure 1 for the 
following definitions of physical parameters in the 
layers. Region 0 is the upper half-space with per- 
mittivity e0. Region 1 of thickness d l is an isotropic 
medium consisted of randomly oriented spheroidal 
scatterers of permittivity es• in a background me- 
dium of permittivity e0•. Region 2 of thickness d 2 is 
an anisotropic medium composed of ellipsoidal 
scatterers of permittivity %2 embedded in a host 

' f v d •'• C •: 2 j k l m ( •'2 ' •22 ; 4) f ) 2 

ß [(Go2ij(?, ?2))(F2k(?2))]' [(G02il(?, •22))(F2m(•22))]* 

(2O) 

where V1 is the volume occupied by region 1 and V2 
is the volume occupied by region 2. The DGF and 
the mean fields have been obtained [Nghiem et al., 
1990]; the correlation functions need to be specified 
next. The integrations are then carried out to derive 
the scattering coefficients. 

For region 1, elements of correlation tensor •O in 
(20) have been defined for the spheroids [Nghiem et 
al., 1993]. In region 2, elements of correlation 
tensor •f2 in the global spatial domain are 

C•:2jklm(•'2, •22, 4)f) = (•2jtc(F2)•tm(•)lf•f(F2)) (21) 

To facilitate the integration of (20), Fourier trans- 
forms of correlation functions are introduced for the 
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statistically homogeneous scattering medium under 
consideration: 

C•2jklm (•'2 __-.o •-•oo , /'2, •f)-- d•2jklm(•'-) 

ß exp [-i•. (?2 - •)] (22) 

which is expressed in the global coordinate system 
(•, p, •) and related by Eulerian rotation transfor- 
mation T, which is determined by (1), to the follow- 
ing nonzero correlations in the local coordinate 
system (•', p', •')' 

tI) 2 x , x, ( [•' ) -- tI) 2 x, x, x , x , ( [•' ) = (23a) 

tYi• 2 x, y , ( [•' ) = tYi• 2 x, x , y , y , ( [•' ) = (23b) 

tYi• 2 x , z, ( [•' ) = tYi• 2 x, x , z , z , ( [•' ) = (23c) 

tI)2 y, x, ([•' ) -- tI) 2 y,y, x, x, ([•' ) = • 2 y,x, tI) •2 (• ' ) (23d) 

(23e) 

•l)2 y, z, ([•' ) -- •l)2 y,y, z, z, ([•' ) -- t• 2 y, z, •l) •:2 (• ' ) (23f) 

tYi• 2 z , x , ( [•' ) -- tYi• 2 z , z , x , x , ( [•' ) = (23g) 

tYi• 2 z , y , ( [•' ) = tYi• 2 z , z , y , y , ( [•' ) = (23h) 

tYi• 2' z, z, ([•' ) = tYi• 2 z, z, z, z, ([•' ) = • 2 z, z, tYi• •2 (• ' ) (23i) 

where •2(/3') is given in (5b), which is the Fourier 
transform of (5a), and variance values of •: in (23) 
are 

2 
E b2 -- E g2p 

•2x'x' = (1 -- fs2) 
•0 + S2x'(Eb2 -- EO2O) 

Es2 -- E g2p 

E 0 + S2x,(Es2 -- EO2O) 

2 

rs2 (24a) 

t• 2 y,y, -- 
E b2 -- E g2p 

E 0 + S2y'(Eb2 -- Eg2O ) 

2 

(1 --rs2) 

Es2 -- E g2p 

E 0 + S2y'(Es2 -- EO2O) 

2 

rs2 (24b) 

t• 2 z'z' = 
Eb2 -- Eg2z 

•0 + S2z'(Eb2 -- EO2z) 

2 

(1 --rs2) 

Es2 -- E g2 z 

•0 + S2z'(•$2 - Eg2z) 

2 

(24c) 

I Eb 2 -- Eg2p t•2x,y, = EO + S2x,(Eb2 -- EO2O) 

[ ß . • b2 -- •020 ' (1 - fs2) 
E 0 + S2y,(Eb2 -- EO2O) 

Es2 -- E g2p 

E 0 + S2x,(Es2 -- EO2O) 

Es2 -- E 92p ' f s2 = • • y' x' 
E 0 + S2y'(Es2 -- EO2O) 

(24d) 

•2x'z' -- 
E b2 -- E g2p 

•0 + S2x'(Eb2 -- EO2 o) 

Eb2 -- Eg2z ,]* •:0 + S2z'(•tb2 -- •:O2z) (1 --fs2) 

Es 2 -- Eg2p •o + S:•,(e•: - e=:p) 

Es2 -- E g2 z 

E 0 + S2z,(Es2 - EO2z) 
fs2 = •z'x' (24e) 

Eb 2 -- Eg2p •2y'z' = 
E 0 + S2y,(Eb2 -- EO2p) 

•:b2 -- •:92z ' (1--fs2) 
E 0 d- S2z,(Eb2 -- Eg2z ) 

Es2 -- E g2p E 0 + S2y'(Es2 -- EO2p) 

Es2 -- E g2 z 

•0 + S2z'(•$2 - Eo2z) 
fs2 = •z'y' (24f) 

On the basis of the invariant property of the Fourier 
transform under the rotation transformation, spec- 
tral density tI)2jklm([• ) in the global coordinates can 
be related to those given in (24) by 

CI)•2 (•) = CI) •2 (• •r = • x COS t•f + • y sin •bf, 

/3• = -/3x sin •bf + fly cos •bf,/3• =/3z) (25) 

In the global coordinates, the rotation transforma- 
tion together with the above invariant property cast 
the anisotropic spectral densities into the form 
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(I)2jklm ([• ) = t• 2jklm(I) •2 ([• ) (26) 

where variance •2jklm is dependent on the Eulerian 
angle •bf as 

t•2jkl m = (t•2x. x. Txxjk -[- t•2y. x. Tyyjk -[- t•2z. x. Tzzjk)Txxlm 

-[-(•2x.y. Txxjk -[- •2y.y. Tyyjk -[- •2z.y. Tzzjk)Tyylm 

+ (•2x,z, Txxjk + •2y,z, Tyyjk + •:z,z, Tzzjn)Tzzlm (27) 

The Eulerian rotation has been applied to arrive at 
(27) where T indicates an element of the following 
transforming tensors: 

COS 2 •bf sin •bf cos •bf !] sin •bf cos •bf sin2 •f 
o o 

(28a) 

sin 2 •bf -sin •bf cos •bf -sin •bf cos •bf COS 2 •f 
o o 

(28b) 

•zz = •- L,c - •ryy = diag [0, 0, 1] (28c) 

By substituting the above correlation functions, 
the dyadic Green's function of the layered media, 
and the mean fields into (20), the correlations of the 
scattered field can now be found. Rearranging all 
the coefficients from the DGF and the mean fields, 
the scattering coefficients can be written as 

-1.1 x.y.z 

ß E E 'ltab ørcd* .abcd qyko 4 x 11xrdk x 1 vK.lrnSljklm -[- 
a.b.c.d j.k.l.m 

ou,od 

f ••r eu.ed x.y.z ß d(•f P2 ((•f) Z E orPq Or rs* .pqrs x 2tz r dkX 2v x,lrn s 2jklm 
p,q,r,s j,k,l,m 

(29) 

The scattering contribution of the first term in (29) 
from region 1 due to the spheroids has been ob- 
tained [Nghiem et al., 1993], and the solution con- 
sists of 16 terms for downgoing and upgoing inci- 
dent and scattered waves. Since region 2 is 
effectively anisotropic, incident and scattered 
waves can be ordinary or extraordinary and going 
down or up; these give rise to 216 terms in the 
second term of (29). All •t'2 coefficients have been 

derived [Nghiem et al., 1990]. For I•j•lm, the result 
is 

i•qrs 
j!•lm = i 

282•21m12 x' 12y, 12z' 

exp [--i(Kpq -- Krs)d2] 

(Kpq -- K2)2(Kpq -- K•)2(Kpq -- Krs ) 

exp [i(Krs -- Kpq)dl] 

(Krs -- K2)2(Krs -- K•)2(Krs -- Kpq) 

--P2(K2)--Q2(K•) 1 (30a) 

where P2(tc2) and Q2(tc•), resulting from complex 
integrations, are determined by 

P2(K2) 

i(d2 -dl) exp [--i(K 2 -- Krs)dl] exp [i(K 2 -- Kpq)d2] 

(2ilm K2)2(K2 -- Kpq)(K 2 -- Krs ) 

exp [--i(Kpq -- Krs)dl] + exp [--i(Kpq -- Krs)d2] + (2iIm K2)2(K2 -- Kpq)(K 2 -- Kr$ ) 
exp [--i(K 2 -- Krs)dl] exp [i(K 2 -- Kpq)d2] 

(2ilm K2)2(K2 -- Kpq)(K 2 -- Kr$ ) 

1 1 1 

iIm K 2 K 2 -- Kpq K 2 -- Krs 
(30b) 

Q2(K•) 

i(d2 -dl) exp [i(k• - Kpq)dl] exp [--i(K• -- Krs)d2] 
(2ilm K•)2(K• -- Kpq)(K• -- Krs ) 

exp [i(K• - Kpq)dl] exp [--i(K• - Krs)d2] 
(2iIm K•)2(K• -- Kpq)(K• -- Krs ) 

1 1 1 

ilmK• K•--Kpq K•--Kr• 
(30c) 

In (30) the pole K2 is computed with the following 
equations: 

2 2 2 2 K 2 : il•-•l + kq, x12x, + k•byl2y, (31a) 

k4• x = kpi cos (4)i -- 4)f) -- kps COS (•s -- •f) (3lb) 

k4•y = koi sin ((•i -- (•f) -- kps sin (•bs - •bf) (31c) 
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where •i and qb• are azimuthal angles of incident 
and scattered waves, respectively. The remaining 
integrations over Eulerian angles in (29) can be 
carried out numerically. When the low-frequency 
condition is valid, the integrations can be done 
analytically. It should be noted that (29) expresses 
the scattering coefficients in the scattered basis 
which can Be transformed to the incident basis by 
changing the sign rrh• K and rrwh • [Nghiem et al., 
1990]. Scattering effects of rough boundaries at 
medium interfaces can also be estimated by inco- 
herently adding the contribution from the rough- 
surface scattering with consideration of the propa- 
gation loss in the calculations of scattering 
coefficients. Compared with the model for the case 
of vertically oriented spheroids [Nghiem et al., 
1990], the new model can give higher copolarized 
backscattering coefficients due to higher total cross 
section of the ellipsoids for the same fractional 
volume. Another difference is that the new model 

provides nonzero cross-polarized backscattering in 
the first-order distorted Born term, whereas the 
former can only account for the cross-polarized 
return in the second or higher-order term when the 
spheroids are vertically oriented. 

4. RESULTS AND DISCUSSION 

4.1. Data comparisons 

In this subsection, theoretical results are com- 
pared with experimental measurements for back- 

scattering coefficient at 9 GHz as a function of 
incident angles. Radar backscatter data were col- 
lected for thick first-year sea ice near Point Barrow, 
Alaska [Kim et al., 1984]. For the sea ice with a 
bare surface, the configuration is illustrated in Fig- 
ure 4, representing a sea-ice layer over seawater. 
The ice layer was 1.65 rn thick and contained brine 
inclusions. From sea-ice characterization data 

taken at Point Barrow, Lin [1988] obtained brine 
permittivity esl = (38.0 + 41.0)% (refer to Vant et 
al. [1978] and Stogryn and Desargant [1985]) and 
fractional volume fs• = 4.5% (from equations by 
Frankenstein and Gardner [1967]). The background 
ice permittivity was estimated to be eO1 ---- (3.15 + 
i0.002)e0 and the permittivity of seawater e2 = (45.0 
+ i40.0)e0. With correlation length l•x, - 0.70 mm, 
l ly, = 0.25 mm, and l•z, = 1.20 mm, theoretical 
results match well with the experimental data, as 
shown in Figure 5, for copolarized backscattering 
coefficient rrhh and •rvv at large incident angles, and 
cross-polarized backscattering coefficient •rhv over 
the range of incident angles. 

The disagreement in the copolarized backscatter- 
ing coefficients at small incident angles is due to the 
scattering from rough surface. In the configuration 
of Figure 4, the interfaces have been assumed to be 
smooth and the rough-surface scattering has been 
ignored. Effects of the roughness at the lower 
interface of the thick first-year sea ice are negligible 
since electromagnetic waves at 9 GHz are attenu- 
ated before the seawater is reached. To account for 

rough-surface effects at the top interface, a Gaus- 
sian roughness is now considered with height stan- 
dard deviation % = 0.6 mm and surface correlation 

0 

-40 

Fig. 5. 
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Backscattering coefficients from bare thick first-year sea 
ice with smooth surface. 
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length ls = 1.5 cm as depicted in Figure 6, where all 
other physical parameters are the same as in Figure 
4. The rough-surface contribution, calculated with 
the small perturbation method (SPM) [Tsang et al., 
1985], is incoherently added to the volume scatter- 
ing. The comparison between theoretical and exper- 
imental results for the copolarized returns is im- 
proved at the low incident angles as seen in Figure 7. 
For this surface the additional contribution to the 

cross-polarized return is small and is actually ignored 
in the SPM model applied in this case. The cross- 
polarized return therefore remains unchanged. 

The configuration for snow-covered sea ice is 
shown in Figure 8. The snow is 10 cm thick accord- 
ing to the average of the reported thickness range 
[Kirn et al., 1984]. The fractional volume of ice 
grains in snow is 34% [Lin, 1988]. In the snow layer 
the oblate spheroidal shape is assumed for the ice 
grains with correlation length 1•, = lz/6 = 0.15 mm. 
Physical parameters for the sea-ice layer and the 
seawater are kept unchanged. Both the top and the 
middle interfaces are rough with standard deviation 
% = 0.1 cm and correlation length ls = 1.5 cm. 
Theoretical results compare well with measure- 
ments from the snow-covered sea ice as seen in 

Figure 9 for conventional backscattering coeffi- 
cients. Theoretical cross-polarized returns are, 
however, lower than the measurements. For a me- 
dium with high fractional volume such as snow, a 
contribution to trn• can come from higher-order 
scattering which is ignored in the present model. 
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œ, - 1.5 cm rr, - 0.6 mm 

•, - (a.lS + i 0.002) eo 
% = (38.0 + i41.00) e0 
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Underlying medium ß 
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Fig. 6. Physical configuration of bare thick first-year sea ice 
with rough surface. 
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Fig. 7. Backscattering coefficients from bare thick first-year sea 
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Regarding the scattering mechanisms, volume scat- 
tering is dominant at large incident angles. Rough- 
surface effects are strong at small incident angles 
with more contribution from the snow-ice interface 

due to the larger permittivity contrast. Oscillations 
seen in the theoretical curves in Figure 9 are caused 
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by the boundary effect of the snow cover. Also, the 
theoretical oscillations in •rhh are stronger than 
those in •rhv and those in •rvv are weakest. This is 
because stronger reflections of horizontal waves, 
due to the medium boundaries, make the wave 
interference more effective. Comparing the cases 
with and without snow cover shows that the low- 

loss dry-snow layer can enhance the backscattering 
due to the introduction of more scatterers (ice 
grains) and a better impedance match between the 
air and the sea-ice layer. 

The above results show that the scattering from 
the inhomogeneities is dominant at large incident 
angles, while the contribution from the rough sur- 
face is important at small incident angles for copo- 
larized returns. The cross-polarized return, which 
occurs as a result of the nonspherical scatterers, 
comes from the first-order term under the distorted 

Born approximation in this model. In the next few 
subsections, effects of correlation lengths and po- 
larization signatures of sea ice are considered. 

4.2. Study of correlation lengths 

The geometry of brine inclusions in sea ice is not 
available from ice characterization data for the 

Point-Barrow sea ice under consideration. To study 
effects of the scatterer size and shape, backscatter- 
ing coefficients are calculated with variable correla- 
tion lengths. To isolate effects of correlation 
lengths, bare sea ice with smooth surface configu- 
ration in Figure 4 is considered to avoid the contri- 
bution from the snow layer and the rough inter- 
faces. The correlation lengths used in the data 
matching serve as a reference. The scatterer is 
expanded, contracted, thickened, thinned, elon- 
gated, and shortened by varying the correlation 
lengths as shown in Table 1, while the fractional 
volume is kept constant in all cases. 

When all correlation lengths are varied by the 
same factor, the scatterer shape remains unchanged 
since the correlation length ratios stay the same. 
For the same fractional volume, the effective num- 
ber of scatterers decreases as the scatterer is ex- 

panded and increases when the scatterer is con- 
tracted. Conventional backscattering coefficients as 
well as correlation coefficient p •- trhhvv/(trhhtrvv)1/2 
[Nghiem et al., 1990] between horizontal and ver- 
tical returns are calculated for the volume expan- 
sion and contraction with the same factor of 1.5 3 . 
The results are plotted in Figure 10. For trnn and 
trvv, the scattering coefficients are reduced much 
more when the correlation volume of the scatterer 

is contracted as compared to the increases in the 
case of volume expansion. This shows a nonlinear 
relationship between volume scattering and the 
scatterer size. In this case an underestimate in the 

scatterer volume, compared to the overestimate 
with the same factor, will lead to more variations in 
copolarized backscattering coefficients. An inter- 
esting observation is the insensitivity of cross- 

TABLE 1. Correlation Lengths for Various Scatterer Shapes 

SHAPE l•, l• l• l•,/ l• l•/ l•, l•/ l• l•,l•l• 
Reference 0.700 0.250 1.200 2.800 1.714 4.800 0.210 

Expanded 1.050 0.375 1.800 2.800 1.714 4.800 0.709 
Contracted 0.467 0.167 0.800 2.800 1.714 4.800 0.062 

Thickened 0.467 0.375 1.200 1.245 2.570 3.200 0.210 

Thinned 1.050 0.167 1.200 6.287 1.143 7.186 0.210 

Elongated 0.572 0.204 1.800 2.800 3.147 8.824 0.210 
Shortened 0.857 0.306 0.800 2.800 0.933 2.614 0.210 
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Fig. 10. Effects of expanded and contracted scatterer volumes. 

80 

polarized ratio e = trhv/O'hh as shown in Figure 10. 
This is because the depolarization is caused by the 
nonspherical shape of the scatterer, which is kept 
unchanged. For correlation coefficient p, the results 
show that horizontal and vertical waves become 

more correlated as the correlation volume in- 

creases. For larger volume of the scatterer, the sea 
ice medium is more lossy and the wave path is 
effectively reduced. Consequently, the anisotropic 
effect causing the decorrelation between horizontal 
and vertical waves is weakened. 

When correlation length ratios are varied while 
the volume of an individual scatterer and the total 

fractional volume are kept constant, the scatterer 
shape is deformed and the number of scatterers 
remains unchanged. For the same vertical correla- 
tion length lz,, horizontal correlation lengths are 
now modified by a factor of 1.5 to thicken and to 
thin the scatterer as indicated in Table 1. In Figure 

11, copolarized returns are rather insensitive, since 
the horizontal cross section of the scatterer is not 

varied (lx, l z, = 0.175 mm2). It is seen in Figure 11 
that the cross-polarized ratio is strongly dependent 
on the scatterer shape. The depolarization effect is 
more prominent, as the scatterer is further de- 
formed from the spheroidal shape. For the magni- 
tude of p, the variation is larger at small incident 
angles where the scatterer shape is more different as 
compared to the cases at large incident angles. The 
phase of p started from 0 ø at normal incidence due 
to the azimuthal symmetry [Nghiem et al., 1992] 
and increases with incident angles. Also, the abso- 
lute value of the phase is larger for the thicker 
scatterer since the anisotropy is stronger. 

While the correlation length ratio lx,/ly,, the num- 
ber of scatterers, and the fractional volume are not 
changed, the scatterer is elongated and shortened 
by varying vertical correlation length I z, by a factor 
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80 

of 1.5. Figure 12 presents results for these cases 
compared with the reference case. There are large 
changes in copolarized returns due to the corre- 
sponding differences in the horizontal cross section 
of the scatterer. The variation in the cross-polarized 
ratio is small, since horizontal correlation length 

ratio lx,/ly, is not varied. The magnitude of p differs 
more at large incident angles, where the shape 
difference is more significant. The phase of p is 
closer to zero as the scatterer becomes shorter and 

the sea-ice medium approaches the isotropic condi- 
tion. As shown in this subsection, scatterer volume 
and horizontal cross section affect the level of 

copolarized returns. The depolarization effect char- 
acterized by cross-polarized ratio e is controlled by 
the scatterer shape. The ellipsoidal shape of the 
scatterer with a preferential alignment in the verti- 
cal direction is also responsible for the anisotropy 

of the medium and, consequently, the behavior of 
complex correlation coefficient p between horizon- 
tal and vertical returns. 

4.3. Polarimetric simulation 

To investigate how polarization signatures relate 
to the corresponding covariance matrices and con- 
vey information regarding different layered config- 
urations and scattering mechanisms, polarimetric 
data are simulated for sea ice with a bare surface 

and with a snow cover at different incident angles. 
Definitions and characteristics of covariance matrix 

and polarization signature can be found in refer- 
ences [Nghiem et al., 1990; van Zyl and Zebker, 
1990]. The configurations under consideration are in 
Figure 4 for bare sea ice with a smooth surface, in 
Figure 6 for bare ice with a rough surface, and in 
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Figure 8 for snow-covered sea ice. As a result of the 
azimuthal symmetry of the scattering configuration, 
the covariance matrix has the form of [Nghiem et 
al., 1992] 

•7 = •rhh 0 e (32) 
p*• 0 

where the copolarized ratio is ), = •r•/•rnn. Note 
that covariance matrix • (without subscript) should 

_ 

be distinguished from correlation tensor C• which 
is tagged with subscript •, corresponding to corre- 
lation function •P• and subscript n for region n = 1, 
2. Elements of the covariance matrix are used to 

calculate the Mueller matrix and to obtain the 

polarization signature •ar, fir, ai, fii) [Nghiem et 
al., 1990; van Zyl and Zebker, 1990] for polarization 
angles ar and ai and e11ipticity angles fir and t3i of 

the received (r) and the incident (i) waves, respec- 
tively. For a copolarized signature, a r = a i = a and 

Normalized copolarized signatures denoted by an 
[Nghiem et al., 1990] for bare sea ice with smooth 
and rough surfaces at incident angles of 20 ø and 45 ø 
are presented in Figure 13. At Ooi = 20 ø, signatures 
for smooth sea ice due to volume scattering and for 
rough sea ice due to surface scattering are similar 
because both covariance matrices have 3' close to 
unity, small e, and p with small phase as seen in 
Figure 14. However, Ipl shown in Figure 14 is 
distinctively smaller for the volume-scattering 
mechanism with smooth surface. At Ooi = 45 ø for 
both smooth- and rough-surface cases, volume scat- 
tering is dominant and correlation coefficients with 
larger phase give rise to signatures in Figures 13c 
and 13d with more distortion compared to those at 
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20 ø . For snow-covered sea ice, Figure 14 reveals 
that Ipl is closer to unity, and the phase is smaller at 
incident angles of 20 ø and 45 ø . Thus the correspond- 
ing signatures for the snow-covered sea ice in 
Figure 15 have much less distortion due to the 
rough surfaces and the isotropic snow layer which 
mask the anisotropic information from the lower 
sea-ice layer at the X band frequency. Boundary 
effects due to snow cover can also be seen with the 

oscillations in the phase of p in Figure 14. 

5. SUMMARY 

In this paper a model has been developed to 
account for ellipsoidal shapes of scatterers in aniso- 
tropic layered media. Ellipsoidal scatterers with a 
preferential alignment in the vertical direction have 
been observed in horizontal and vertical sections of 

sea ice. Effective permittivities are derived with the 
extended strong fluctuation theory, and fully pola- 
rimetric backscattering coefficients are calculated 
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8O 

under the distorted Born approximation. In this 
model the cross-polarized return is obtained from 
the first-order approximation due to nonspherical 
shapes of the scatterers. Effects of rough surfaces 
are estimated with the incoherent addition method. 

Theoretical results compare well with measured 
data at 9 GHz for thick first-year sea ice with a 
bare surface and a'snow cover. Changes in scatter- 
ing coefficients due to the scatterer geometry are 
investigated by varying correlation lengths which 
modify the shape or the volume of the scatterer, 
This sensitivity study also provides an estimation 
of variations in polarimetric scattering coefficients 
due to uncertainties in the scatterer sizes and 

shapes. Polarization signatures are simulated for 

the thick first-year sea ice with and without snow 
cover. These signatures convey information on 
the medium anisotropy, which are influenced by 
rough-surface or snow cover effects. Volume- and 
surface-scattering mechanisms are discussed in 
terms of conventional backscattering coefficients 
as well as polarization signatures and correlation 
coefficient p between vertical and horizontal re- 
tums. Further medium complexity such as multi- 
species, size and shape distributions, and higher- 
order volume or surface scattering have not been 
incorporated in this model and can be considered 
for future model developments with comparisons 
to well-calibrated measurements of polarimetric 
covariance matrices. 

o' n (a) Snow Cover o'n • • Incident Angle (b) Snow Cover Incident Angle 
= 20 ø 0o• = 45 ø 

0o 0o 

"øo111 I 

Fig. 15. Polarization signatures of thick first-year sea ice with snow cover at incident angles of 20 ø and 45 ø . 
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